INCORPORATING PROJECT-BASED LEARNING INTO ENGINEERING COURSES
models for two types of non-capstone courses
What is Project-based Learning?

- Approach often used for senior design class (Dym et al. 2005)
 - Also a very effective method in lower-level courses
- Assignment leads to the production of a final product (e.g., design, model, device, simulation)
- Culmination is usually a report/presentation
- Real-world problems provide context for learning
 - Complex
 - Ill-structured
 - Open-ended
Problem- and Project-based Learning
(Mills and Treagust, 2003)

- Both involve real-world problems requiring teamwork and guidance by instructors

 Project-based Teaching Strategy

 - Assign Collaborative Working Groups
 - Present a Real World Problem That Pupils Can Connect
 - Set the Parameters for Completing the Project
 - Teacher Consultation Input/Feedback
 - Final Product Shared with Larger Group

 Problem-based learning
 - Emphasis on acquiring knowledge
 - Solution is often secondary

 Project-based learning
 - Focus on end product
 - Emphasis on applying/integrating knowledge

- Blend of Problem- and Project-based learning is also effective
Advantages
(Prince and Felder, 2006)

- **Learner-centered approach**
 - Students required to take more responsibility for learning

- **Constructivist approach**
 - Students construct own version of reality rather than version presented by teacher

- **Team-based cooperative learning outside class**
 - Active learning, primarily self-directed
Benefits
(Thomas, 2000)

- In comparison with traditional classroom methods, project-based learning results in better:
 - Content knowledge
 - Conceptual knowledge
 - Problem solving ability
 - Metacognitive skills
 - Attitude toward learning
Benefits (con’t)
(Mills and Treagust, 2003)

- Problem-based learning also results in better:
 - Communication and teamwork skills
 - Understanding of professional practice
 - How to apply learning to solve problems
Examples of Project-Based Learning at Rowan University

- **Freshman Engineering Clinic**
 - Introductory, multidisciplinary course
 - Hands-on project provides framework

- **Chemical Reaction Engineering**
 - Junior-level core chemical engineering course
 - Design project (on paper)
 - 5 assigned memos provide framework
 - Memos synchronized with course content
Freshman Engineering Clinic

- First year introductory course
- 2 credits
- 1 hr lecture + 2.5 hr lab each week
- Multidisciplinary students and content
- ~20 students per section with 1 instructor

“Tell me and I forget
Show me and I may remember
Involve me and I understand”
Course Objectives

- Units conversions
- Data representation
- Data analysis
- Reverse Engineering and Design

- Written communications
- Oral communications
- Teamwork skills
- Ethics, global thinking
- Library research skills

- Taught in a PrBL environment
- Flexibility with regard to order of topics
Biodiesel Fuel Production

- Design a process to produce 100% of biodiesel needed to fuel shuttle van to new Tech Center

- Modules investigate engineering aspects of design and production

- Provide framework for learning
 - Introduce new, project-specific engineering concepts
 - Introduce general content related to course objectives
 - Reinforce concepts by application

www.4cleanfuels.com
Reaction, Separation, Purification

- New & Waste Vegetable Oil
- 1-L Batch Reaction
 - Vegetable Oil + Methanol \rightarrow Biodiesel + Glycerin
- Purification
 - Washing with water vs. adsorption
Biodiesel Production Concepts

<table>
<thead>
<tr>
<th>Module</th>
<th>New Engineering Concepts</th>
<th>Reinforced Concepts</th>
<th>Course Objectives</th>
</tr>
</thead>
</table>
| Reaction and Separation | • Batch reaction
• Mass balances
• Phase separation | • Titration, stoichiometry and yield (chemistry)
• Derivatives - reaction rates (calculus) | • Unit conversions
• Data representation and analysis
• Library research
• Written communication |
| Purification | • Phase distribution
• Adsorption
• Void volume
• Flow rate
• Quality-quantity trade-off | • Mass balances (engineering)
• Gravity flow-derivatives (calculus) | • Unit conversions
• Data representation and analysis
• Library research
• Written communication |
Physical Property and Quality Testing

- Physical Property Tests
 - pH, viscosity, specific gravity, cloud point
- Semi-quantitative and threshold tests
 - Aged, oxidized fuel
 - Glycerides
 - Acid accumulation
 - Soap
 - Water
Property Testing Module Concepts

<table>
<thead>
<tr>
<th>New Engineering Concepts</th>
<th>Reinforced Concepts</th>
<th>Course Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Viscosity</td>
<td>• Physical properties (chemistry)</td>
<td>• Unit conversions</td>
</tr>
<tr>
<td>• Property measurement</td>
<td>• Presence of contaminants (chemistry)</td>
<td>• Data representation and analysis</td>
</tr>
<tr>
<td>• ASTM test methods</td>
<td></td>
<td>• Library research</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Written and oral communication</td>
</tr>
</tbody>
</table>
Biodiesel Performance

- **Calorimetry Experiment**
 - Determine heat of combustion
 - Compare feedstock, product, commercial B20, and petro-diesel

- **Generator Testing**
 - Emissions (NO\textsubscript{x}, CO, CO\textsubscript{2})
 - Fuel Consumption
 - Efficiency
Energy/Emissions Module Concepts

New Engineering Concepts
- Energy balance
- Energy content
- Emissions
- Power calculations
- Volumetric efficiency
- Emissions

Reinforced Concepts
- Heat capacity (chemistry)

Course Objectives
- Unit conversions
- Data representation and analysis
- Library research
- Written and oral communication
Reverse Engineering and Design

- Construct and test 150 L biodiesel processor
- Test and improve biodiesel processor
Design Module Concepts

New Engineering Concepts
- Reverse engineering
- Scale-up and design

Reinforced Concepts
- Mass balances
- Measurements

Course Objectives
- Unit conversions
- Library research
- Written communication
Ethics and Global Issues

- Oral and written assignments
 - Corporate average fuel economy standards
 - Should SUVs count as Cars or Light Trucks?
 - A critical analysis of global warming data
 - Ethanol and biodiesel – a solution to GGE or just another farm subsidy?
 - Carbon emissions trading
Ethics / Issues Module Concepts

<table>
<thead>
<tr>
<th>New Engineering Concepts</th>
<th>Reinforced Concepts</th>
<th>Course Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Role of engineer</td>
<td></td>
<td>• Library research</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Written and oral</td>
</tr>
<tr>
<td></td>
<td></td>
<td>communication</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Global issues</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ethics</td>
</tr>
</tbody>
</table>
Summary

Biodiesel Production Project

- Students gained technical knowledge of biodiesel process through hands-on investigations
 - Reaction
 - Separation
 - Quality Testing
 - Performance Testing
 - Pilot plant
 - Ethics

Educational Outcomes

- Students demonstrated the following abilities:
 - Teamwork
 - Analysis of data
 - Library research skills
 - Written and oral communications
 - Understanding of ethical and global issues
Chemical Reactor Design

- 4-credit junior level ChE core course
- 2 x 1.25 h and 1 x 2.5 h meeting weekly
- 3 exams (65%) and HW (10%)
- Project (outside of class time)
 - Teams of 3-4 students
 - 5 memos at 2-3 week intervals
 - Final presentations
 - Final report
 - 25% of course grade
Reactor Design Project Overview

- Design a reactor for the production of a (specified) commodity chemical
 - Literature review
 - Background on product and production technologies
 - Reaction kinetics for specified system
 - Initial design
 - Isothermal, isobaric, simple kinetics
 - Gradually remove simplifying assumptions
 - Reactor analysis using hand calculations, POLYMATH®, and Aspen Plus® process simulator
Memo 1: Background & overall mass and energy balances

Memo 2: Isothermal, isobaric reactor sizing with simple kinetics

Memo 3: Pressure drop and reactor size optimization

Memo 4: Multiple reactions

Memo 5: Energy balances with multiple reactions
Making things go smoothly

- Memos were synchronized with lecture topics
- Teams were assigned one of two products
 - Chose kinetics from literature; steered away from unreasonable choices
- Resources (online, library reserve, library reference)
 - Detailed guide to references avoids confusion
- Teamwork and problem solving skills are essential
- Graduate assistant helped teams troubleshoot models
Summary

- PBL in Engineering Curricula
 - PBL in courses at Rose-Hulman, Carnegie Mellon, and WPI (Rosenbaum, 2006)
 - PB curricula at Aalborg Denmark, Monash and Central Queensland University (Mills & Treagust, 2003)

- Benefits of PBL
 - Content knowledge
 - Conceptual knowledge
 - Problem solving ability
 - How to apply learning
 - Metacognitive skills
 - Attitude & Motivation
 - Communication and teamwork skills
 - Understanding of professional practice

